

Electricity Storage Valuation Framework:

Assessing system value and ensuring project viability

Copyright © IRENA 2020

Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given of IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material.

ISBN 978-92-9260-161-4

Citation: IRENA (2020), *Electricity Storage Valuation Framework: Assessing system value and ensuring project viability*, International Renewable Energy Agency, Abu Dhabi.

About IRENA

The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity.

www.irena.org

Acknowledgements

This report benefited from the reviews and comments of numerous experts, including Juha Kiviluoma (VTT), Derek Stenclik (Telos Energy), Ronald L. Schoff, Ben Kaun and Joseph Stekli (Electric Power Research Institute – EPRI), Simon Mueller (Enertrag), Pradyumna Bhagwat and Piero Carlo Dos Reis (Florence School of Regulation), Benjamin Dupont (Tractabel-Engie), Danny Pudjianto (Imperial College), Ben Irons (Habitat Energy), Christophe Gence-Creux (Agency for the Cooperation of Energy Regulators – ACER), Troy Hodges (Federal Energy Regulatory Commission – FERC). The report also benefited from valuable comments from IRENA colleagues, including Harold Anuta, Arina Anisie, Emanuele Bianco, Francisco Boshell, Sean Collins and Hameed Safiullah.

Contributing authors: Emanuele Taibi, Thomas Nikolakakis, Carlos Fernandez and Aakarshan Vaid (IRENA), Ann Yu, Vinayak Walimbe and Mark Tinkler (Customized Energy Solutions, Ltd), and Randell Johnson (acelerex).

For further information or to provide feedback: publications@irena.org

This report is available for download: www.irena.org/publications

Disclaimer

This publication and the material herein are provided "as is". All reasonable precautions have been taken by IRENA to verify the reliability of the material in this publication. However, neither IRENA nor any of its officials, agents, data or other third-party content providers provides a warranty of any kind, either expressed or implied, and they accept no responsibility or liability for any consequence of use of the publication or material herein.

The information contained herein does not necessarily represent the views of all Members of IRENA. The mention of specific companies or certain projects or products does not imply that they are endorsed or recommended by IRENA in preference to others of a similar nature that are not mentioned. The designations employed, and the presentation of material herein do not imply the expression of any opinion on the part of IRENA concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries.

Electricity Storage Valuation Framework

Assessing system value and ensuring project viability

- Part 1. Why storage valuation matters
- Part 2. Using power system models to assess value and viability
- Part 3. Real-world cases of storage use in power systems

Contents

Tables Abbreviations Executive summary		9 10 13
PART 1: Framework overview		
1.	Introduction	17
2.	The role of electricity storage in VRE integration	2
3.	Methodology	24
	Phase 1: Identify electricity storage services supporting the integration of VRE	25
	Phase 2: Mapping of storage technologies with identified services	26
	Phase 3: Analyse the system value of electricity storage vs. other flexibility options	26
	Phase 4: Simulate storage operation and stacking of revenues	28
	Phase 5: Assess the viability of storage projects: System value vs. monetisable revenues	30
4.	Recommendations	3
	4.1 Recommendations for different storage stakeholders	3
	4.2 Policies and regulations to support cost-effective storage deployment	32
5.	Conclusions	33
PΑ	RT 2: Using power system models to assess value and viability	35
1.	Introduction	35
2.	Methodology	37
	Phase 1: Identify electricity storage services supporting the integration of VRE	37
	Phase 2: Storage technology mapping	38
	Methodology	38
	Application ranking	43
	Phase 3: System value analysis	43
	Capacity expansion optimisation	44
	Production cost modelling	45
	 Electricity storage benefits for the power system 	47
	Phase 4: Simulated storage operation	53
	Price-taker storage dispatch model	53
	Phase 5: Storage project viability analysis	55
	Project feasibility model	55
	Monetisable benefits and costs	55
	 Assigning system value to individual storage projects 	56
	Economic viability gap and missing money issue	58
3.	Conclusions	60

PART 3: Real-world cases of storage use in power systems		63
Introduction		63
Ca	se 1: Operating reserves	64
1.	Challenge - Increased need for operational reserves and a faster response	64
2.	Innovative products to provide reserves	64
3.	Impact of operational reserves on storage deployment	66
4.	Storage providing operating reserves	67
5.	Conclusions and further reading	67
Ca	se 2: Flexible ramping	70
1.	Challenge - The duck curve	70
2.	Flexible ramping as a solution	71
3.	Impact of flexible ramping on storage deployment	72
4.	Storage providing flexible ramping	72
5.	Conclusions and further reading	73
Ca	se 3: Energy arbitrage	75
1.	The role of energy arbitrage in VRE integration	75
2.	Storage providing energy arbitrage	78
3.	Conclusions and further reading	80
Ca	se 4: VRE smoothing	81
1.	Challenge - VRE output fluctuation	81
2.	Solution	81
3.	Storage deployment driven by VRE smoothing	82
4.	Storage providing VRE smoothing	83
5	Conclusions: Is VRE smoothing a relevant case for storage today?	84

Cas	85	
1.	Challenge – Effects on T&D	85
2.	Solutions to integrating VRE on T&D networks	86
3.	Storage projects for T&D investment deferral	87
4.	Conclusions and further reading	88
Cas	se 6: Peaking plant capital savings	89
1.	Challenge - Ensure generation adequacy	89
2.	Solution: Capacity mechanisms vs scarcity price	89
3.	Energy storage deployment with security of supply mechanisms	90
4.	Storage enables savings in peaking plant investment	91
5.	Conclusions and further reading	93
Ca	se 7: Enabling high shares of VRE in an off-grid context	94
1.	Challenges	94
2.	Solutions	94
3.	Storage deployment in an off-grid context	95
4.	Conclusions and further reading	97
Ca	se 8: Behind-the-meter electricity storage	97
1.	Challenges for self-consumption of VRE	97
2.	Solution: Behind-the-meter electricity storage	98
3.	BTM battery storage deployment and real examples	99
4.	Key enablers of BTM energy storage	99
5.	Conclusions and further reading	101
Re	eferences	102

Figures

Figure I	Electricity generation mix and power generation installed capacity by fuel,	
_	REmap case, 2016–50	17
Figure 2	Traditional flexibility providers versus emerging flexibility providers	18
Figure 3	Electricity storage valuation framework: Five phases	20
Figure 4	System services that electricity storage can provide at varying timescales	22
Figure 5	Benefits of energy storage on the grid	23
Figure 6	Electricity storage services and their relevance to renewable power integration	25
Figure 7	Illustrative output from Phase 4	29
Figure 8	Illustrative output from Phase 5	30
Figure 9	ESVF phases and the types of models used	35
Figure 10	Information flow between modelling-based phases of the framework (Phases 3-5)	36
Figure 11	Economic viability gap identified in the project feasibility analysis	37
Figure 12	Quantifiable electricity storage services	37
Figure 13	Sample default values for storage technology mapping	39
Figure 14	Example of competitive scores for storage technologies	40
Figure 15	Example of illustrative parameter weightings for different applications	4
Figure 16	Example of suitability matrix for different applications	42
Figure 17	Example of weighted scores	43
Figure 18	Example of application ranking	43
Figure 19	Calculation steps in system value analysis	46
Figure 20	Load profile over 24 hours with and without storage (top panel) and storage charge and discharge over 24 hours (bottom panel)	49
Figure 21	Heat rate curve of a thermal generator	49
Figure 22	Demand, ramping curves and VRE curtailment without storage (top panel) and with storage (bottom panel)	50
Figure 23	Dispatch and reserve provision with thermal generators and 200 MW of batteries	5
Figure 24	Illustrative output from a price-taker storage dispatch model	54
Figure 25	Example of electricity storage project financial statements	55

Figure 2	26	Cost and benefit analysis	58
Figure 2	27	Outcome of three scenarios subject to cost-benefit analysis	59
Figure 2	28	Electricity storage valuation framework: How to value storage alongside VRE integration	64
Figure 2	29	Summary of operating reserves	65
Figure :	30	Frequency response services in the United Kingdom	65
Figure :	31	Low Carbon's Glassenbury project	66
Figure :	32	Hornsdale power reserve project in South Australia	67
Figure :	33	Hornsdale Power Reserve revenues in 2018	68
Figure :	34	South Australian total regulation FCAS payments	68
Figure :		Response of Hornsdale during the underfrequency event of 25 August 2018 in South Australia	69
Figure :	36	Electricity demand in the Spanish power system, 31 January 2019	70
Figure :	37	Net load curve (duck curve) for the California power system, 15 May 2018	71
Figure :	3 8	Ramp requirement calculation for the FRP	72
Figure :	39	Solar PV and battery dispatch, 20 December 2018, CAISO system	73
Figure 4	40	Impact on the duck curve of energy storage providing flexible ramping, an example of one 3 MW feeder (not the entire CAISO system)	74
Figure 4		Example of VRE-shifting use: renewable generation and net load with and without energy storage, and charging and discharging profile of energy storage	76
Figure 4	42	EVs providing energy arbitrage	77
Figure 4	43	Hornsdale Power Reserve in South Australia	78
Figure 4	44	Hornsdale Power Reserve average dispatch price and charge and discharge prices	79
Figure 4	45	Commissioning of the wind-hydro system in El Hierro	80
Figure 4	46	VRE smoothing process in a period where the maximum allowed ramp is exceeded by the VRE resource	81
Figure 4	47	Batteries at the Prosperity energy storage project in New Mexico	82
Figure 4	48	Wind power plant in Maui, Hawaii	82
Figure 4	49	Prosperity energy storage project providing VRE smoothing to a solar PV plant	83
Figure	50	Solar PV smoothing on the French island of La Réunion with a 9 MWh battery	84
Figure	51	Transmission congestion between northern and southern Germany	85
Figure	52	Energy storage for transmission deferral	86
Figure !	53	NaS batteries from NGK in Varel (Germany), similar to the ones in Campania region	87

Figure 54 Greensmith battery storage system for distribution deferral in California	87
Figure 55 Decentralised capacity successful in capacity market auctions, United Kingdom, 2018-22	91
Figure 56 Demand curve with and without energy storage, Massachusetts, 2020	92
Figure 57 Saturation effects of peak load reduction	93
Figure 58 Solar PV share in least-cost hybrid mini-grids	94
Figure 59 Inspection of a solar mini grid in Mog Mog, Ulithi atoll, Yap State, FSM	96
Figure 60 60 kW solar mini-grid in Ulithi high-school, Yap State, FSM	96
Figure 61 Demand and generation in a self-consumption system	98
Figure 62 Household battery storage systems in Germany, 2013–18	99
Figure 63 Overview of an aggregator	100
Figure 64 Schematic depicting flow of electricity and payments in a net billing scheme	102

Tables

Table 1	Techno-economic parameters for electricity storage suitability assessment	26
Table 2	Electricity storage benefits from Phase 3	27
Table 3	Storage technologies for consideration	38
Table 4	Sample look-up table for competitive score	40
Table 5	Parameters used in optimising the capacity for alternative technologies	44
Table 6	Storage benefits categorised as quantifiable and non-quantifiable	48
Table 7	Inputs and outputs from the price-taker storage dispatch model	54
Table 8	Illustrative example of storage MW and MWh potential	56
Table 9	Illustrative example of monetary value of benefits to the system	56
Table 10	Example of weights assigned according to C-rate needed for a given benefit	57
Table 11	Illustrative example of benefits by C-rate	57
Table 12	Illustrative example of USD/MW benefits by C-rate	57

Abbreviations

AC alternating current

AEMO Australian Energy Market Operator

APS Arizona Public Service

BTM behind the meter

CAES compressed air energy storage

CAISO California Independent System Operator

CAPEX capital expenditureCMP Central Maine Power

COE cost of energy

C-rate charge (or discharge) rate of a battery

CSP concentrated solar power

DAM day-ahead market
DoD depth of discharge
DSR demand-side response

enhanced frequency response

ERCOT Electric Reliability Council of Texas

ESS energy storage system

ESVF Electricity Storage Valuation Framework

EV electric vehicle

FCAS frequency control ancillary services
FCR frequency containment reserves

FERC Federal Energy Regulatory Commission

FFR fast frequency response

FIT feed-in premium feed-in tariff

FOM fixed operational and maintenance (costs)

FRD flexible ramping down
FRP flexible ramping product

FRU flexible ramping up

HPR Horndale Power Reserve

IRENA International Renewable Energy Agency

IRR internal rate of return

ISO independent system operator

investment tax credit

kg kilogramkW kilowatt

kWh kilowatt hour