Indicative Technical Specifications of Shallow Well (Surface) Solar Pumping Systems with D.C. Motor Pump Set with Brushes or Brushless D.C. (B.L.D.C.)

Description	Model-I	Model-II	Model-III	Model-IV	Model-V	Model-VI	Model-VII	Model- VIII	Model-IX	Model-X	Model-XI	Model-XII	Model- XIII
PV array (Wp)	900	1800	2700	2700	4800	4800	4800	6750	6750	6750	9000	9000	9000
Motor Pump-set capacity (HP)	1	2	3	3	5	5	5	7.5	7.5	7.5	10	10	10
Shut Off Dynamic Head (meters)	12	12	12	25	12	25	45	12	25	45	12	25	45
Water output * (Liters per day)	99000 (from a total head of 10 meters)	198000 (from a total head of 10 meters)	297000 (from a total head of 10 meters)	148500 (from a total head of 20 meters)	528000 (from a total head of 10 meters)	264000 (from a total head of 20 meters)	182400 (from a total head of 30 meters)	742500 (from a total head of 10 meters)	371250 (from a total head of 20 meters)	256500 (from a total head of 30 meters)	990000 (from a total head of 10 meters)	495000 (from a total head of 20 meters)	342000 (from a total head of 30 meters)

^{*} Water output figures are on a clear sunny day with three times tracking of SPV panel, under the "Average Daily Solar Radiation" condition of 7.15 kWh/ sq.m. on the surface of PV array (i.e. coplanar with the PV Modules).

Notes:

- 1. Suction head, if applicable, minimum 7 meters.
- 2. For higher or lower head / PV capacity, or in between various models; water output could be decided as per the clause 4 (i.e. Performance Requirements) specified earlier.
- 3. If submersible pumps are used in lieu of surface pumps, the water output must match that of the surface pumps as specified in this table.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 51 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

ANNEXURE - B (Continue)

Indicative Technical Specifications of Solar Deep well (submersible) Pumping Systems with D.C. Motor Pump Set with Brushes or

Brushless D.C. (B.L.D.C.)

Description	Model-I	Model-II	Model- III	Model- IV	Model-V	Model- VI	Model- VII	Model- VIII	Model- IX	Model-X	Model- XI	Model- XII	Model- XIII	Model- XIV
PV array (Wp)	1200	1800	3000	3000	3000	4800	4800	4800	6750	6750	6750	9000	9000	9000
Motor Pump-set capacity (HP)	1	2	3	3	3	5	5	5	7.5	7.5	7.5	10	10	10
Shut Off Dynamic Head (meters)	45	45	45	70	100	70	100	150	70	100	150	70	100	150
Water output * (Liters per day)	45600 (from a total head of 30	68400 (from a total head of 30	114000 (from a total head of 30	69000 (from a total head of 50	45000 (from a total head of 70	110400 (from a total head of 50	72000 (from a total head of 70	50400 (from a total head of 100	155250 (from a total head of 50	101250 (from a total head of 70	70875 (from a total head of 100	207000 (from a total head of 50	135000 (from a total head of 70	94500 (from a total head of 100 meters)

^{*} Water output figures are on a clear sunny day with three times tracking of SPV panel, under the "Average Daily Solar Radiation" condition of 7.15 kWh/sq.m. on the surface of PV array (i.e. coplanar with the PV Modules).

Notes:

- 1. For higher or lower head / PV capacity, or in between various models; water output could be decided as per the clause 4 (i.e. Performance Requirements) specified earlier.
- 2. If surface pumps are used in lieu of submersible pumps, the water output must match that of the submersible pumps as specified in this table.

NIT/Bid Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 52 of
Grid/192012030 Dated	1:- XX-	XX-XXXX	& SCC	134

ANNEXURE - C

Indicative Technical Specifications of Shallow Well (Surface) Solar Pumping Systems with A.C. Induction Motor Pump Set

Description	Model-I	Model-II	Model-III	Model-IV	Model-V	Model-VI	Model-VII	Model- VIII	Model-IX	Model-X	Model-XI	Model-XII	Model- XIII
PV array (Wp)	900	1800	2700	2700	4800	4800	4800	6750	6750	6750	9000	9000	9000
Motor Pump-set capacity (HP)	1	2	3	3	5	5	5	7.5	7.5	7.5	10	10	10
Shut Off Dynamic Head (meters)	12	12	12	25	12	25	45	12	25	45	12	25	45
Water output * (Liters per day)	89100 (from a total head of 10 meters)	178200 (from a total head of 10 meters)	267300 (from a total head of 10 meters)	132300 (from a total head of 20 meters)	475200 (from a total head of 10 meters)	235200 (from a total head of 20 meters)	168000 (from a total head of 30 meters)	641025 (from a total head of 10 meters)	330750 (from a total head of 20 meters)	236250 (from a total head of 30 meters)	890000 (from a total head of 10 meters)	441000 (from a total head of 20 meters)	324000 (from a total head of 30 meters)

^{*} Water output figures are on a clear sunny day with three times tracking of SPV panel, under the "Average Daily Solar Radiation" condition of 7.15 kWh/ sq.m. on the surface of PV array (i.e. coplanar with the PV Modules).

Notes:

- 1. Suction head, if applicable, minimum 7 meters.
- 2. For higher or lower head / PV capacity, or in between various models; water output could be decided as per the clause 4. (i.e. Performance Requirements) specified earlier.
- 3. If submersible pumps are used in lieu of surface pumps, the water output must match that of the surface pumps as specified in this table.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 53 of
Grid/1920	012030 Dated	:- XX-	XX-XXXX	& SCC	134

ANNEXURE - C (Continue)

Indicative Technical Specifications of Solar Deep well (submersible) Pumping Systems with A.C. Induction Motor Pump Set

Description	Model-I	Model-II	Model- III	Model- IV	Model-V	Model- VI	Model- VII	Model- VIII	Model- IX	Model-X	Model- XI	Model- XII	Model- XIII	Model- XIV
PV array (Wp)	1200	1800	3000	3000	3000	4800	4800	4800	6750	6750	6750	9000	9000	9000
Motor Pump-set capacity (HP)	1	2	3	3	3	5	5	5	7.5	7.5	7.5	10	10	10
Shut Off Dynamic Head (meters)	45	45	45	70	100	70	100	150	70	100	150	70	100	150
Water output * (Liters per day)	42000 (from a total head of 30	63000 (from a total head of 30	105000 (from a total head of 30	63000 (from a total head of 50	42000 (from a total head of 70	100800 (from a total head of 50	67200 (from a total head of 70	43200 (from a total head of 100	141750 (from a total head of 50	94500 (from a total head of 70	60750 (from a total head of 100	189000 (from a total head of 50	126000 (from a total head of 70	81000 (from a total head of 100 meters)

^{*} Water output figures are on a clear sunny day with three times tracking of SPV panel, under the "Average Daily Solar Radiation" condition of 7.15 kWh/ sq.m. on the surface of PV array (i.e. coplanar with the PV Modules).

NIT/Bid Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 54 of
Grid/192012030 Dated:-	- XX-	XX-XXXX	& SCC	134

Guidelines on Testing Procedure for Solar Photovoltaic Water Pumping System

1 SCOPE

These Guidelines lays down basis for testing set up and testing procedures for Solar Photovoltaic (SPV) water pumping system. The SPV water pumping system covered are centrifugal pumps of all types up to 1-10 HP capacity.

2 REFERENCE STANDARDS

The Indian and IEC Standards listed at Annex A contain provisions which, through reference in this text, constitute provision of this standard. Latest editions of the indicated standards should be considered.

3 DEFINITION OF SYSTEMS AND PARAMETERS

3.1 Systems

3.1.1 Stand-Alone Solar PV Water Pumping System

A Solar PV Water Pumping System in stand-alone operation is neither connected to the grid nor to battery bank and is comprised mainly of the following components and equipment:

PV Modules, cabling, controller, motor pump-set and hydraulic piping. Combination of all these components shall be unique. Any change in combination will be treated as different model of pumping system.

3.1.2 *Motor-Pump Set*

The Motor-pump set consists of the pump (centrifugal pump) and the driving motor.

NIT/Bid Document No	.: EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 55 of
Grid/192012030 Dated:- X	X-XX-XXXX	& SCC	134

3.1.3 Controller

The controller converts the DC power (DC voltage & Current) of the PV array into a high or low DC voltage power, or converts this DC power into single -phase or multi-phase alternating-current power (voltage or alternating current) suitably for driving the motor of Motor-pump set.

NOTE — The Controller may also include equipment for MPPT, monitoring, metering and for protection purposes.

3.2 Parameters

Following parameter shall be referred during testing of SPV pumping system:

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 56 of
Grid/1920	12030 Dated	l:- XX-	XX-XXXX	& SCC	134

Table 1 -		
Parameter	Symbol	Unit
(1)	(2)	(3)
Array voltage (DC)	V_a	V
Array current (DC)	I_a	A
Array open circuit voltage (DC)	V_{oc}	V
Array short circuit current (DC)	I_{sc}	A
Array maximum power point voltage(DC)	V_{mpp}	V
Array maximum power point current (DC)	I_{mpp}	A
Pressure as measured	p	kg/cm ²
Flow rate	Q	Lps /Lpm /m³h
Motor voltage DC or AC	V_m	V
Motor current DC or AC	I_m	A
Motor voltage (multi-phase AC)	$V_{\rm rms}$	V
Motor current (multi-phase AC)	$I_{ m rms}$	A
Power factor	cosØ	-
AC frequency (or DC switching frequency)	F	Hz
Motor speed	N	min-1
Radiation	E_e	W/m²
Temperature	T	<u>o</u> C

4 TEST SET UP

4.1 Test Set-

Up

Illustration(s) of test set-ups are shown in Figure 1 & Figure 2, and a block diagram of required

test set-up is shown in Figure 3. All test set-ups shall conform to applicable model test set-ups referred above and the water level in the sump well, locations of throttle valve, flow meter and pressure gauge/sensor connections as indicated in the test set-up(s) shall conform to Figure 1, Figure 2 & Figure 3 accordingly.

4.2 Precautions for Test

Setup:

Before initiating testing of SPV pump the following precautions must be

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 57 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

followed:

- a) In case of direct coupled pump-set, proper alignment of input pipe, output pipe and the sensors shall be ensured.
- b) Air tightness in suction line shall be ensured and the general layout of the system pipe work should be designed to avoid airlocks.
- c) The offset pipe of suction line shall either be horizontal or inclined upward towards the pump and shall never be inclined downward towards the pump to avoid air trapping.
- d) For the delivery head, a pressure gauge/sensor shall be connected to the delivery line with tapping as shown in Figures 1 or 2 or 3. The tapping shall be flush with the inside of the pipe and shall have its axis at right angles to the direction of flow. The pipe set up between the pump outlet and the pressure sensor should be the same diameter as the manufacturer's outlet fitting. Sensor/gauge may be connected to the tapping point through a flexible hose.
- e) Preferably, Digital Pressure sensor/gauges of suitable range need to be used for the measurement of head. Care shall be taken to eliminate any leaks in the connecting pipes and to avoid the trapping of air in the connecting pipe or hose.
- f) It is assumed that over the normal operating range of the pump the pressure drop due to frictional losses between the pump outlet and the pressure sensor will be negligible and the kinetic energy component of the water at the pump outlet will be small compared to the
- increase in potential energy due to the increased pressure across the pump.
 g) For instantaneous performance testing, pressure can be sustained by means of a simple
- g) For instantaneous performance testing, pressure can be sustained by means of a simple gate valve in which a backpressure is sustained by restricting the flow. An automatic control valve(s) may be used to sustain a constant upstream pressure. Pressure may also be sustained by means of a pre-pressurized air chamber operating with a pressure maintaining valve at the outlet. A real water column may also be used.
- h) A good quality digital flow meter with electrical output linearly proportional to flow rate shall be connected at the other end of the delivery pipe. The distance between the auto control valve and flow meter shell be minimum 1.5 meters to ensure laminar flow of water.
- i) After flow meter the end of the discharge pipe should be beneath the water surface to prevent splashing. This could cause a mixed water / air bubbles fluid entering the pump inlet and affecting its proper operation. If so then a vertical baffle or a similar arrangement shall be inserted in the tank between the pump intake and the return pipe such that water does not make any splash and avoid any bubbles when spread to the bottom of tank to reach the input pump. In this way any small bubbles will be excluded, as they will remain near the surface. Alternatively, a large pipe can be placed around the pump with its top breaking the surface and an arch cut in its base to allow water entry.

4.3 Priming

Arrangement

A non-return valve/ foot valve shall be used in suction line, further it may also require suction pipe

NIT/Bid D	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 58 of
Grid/192012	2030 Dated:	- XX-X	& SCC	134	

need to be filled with water for priming purpose in case of surface pumps.

4.4 PV Module Array Structures:

For testing the SPV pump using the actual solar array, outdoor PV array structures with different

module mounting capacity (4,6,8,10, etc.) should be used. The modules are mounted on the structures with tracking facility to optimize irradiance, power output and accordingly, the total quantity of water pumped in a day.

4.5 Sun Simulator PV Module

Tester:

To estimate the wattage of the PV modules under STC, a high precession (at least class AAA as

per IEC 60904-9) sun simulator module tester is required in the pump testing lab. Alternatively, all PV modules should have STC testing certificate from an NABL accredited test laboratory and

the date of testing should not be later than a year. In the STC testing, if the module is found degraded, the degraded data should be used.

4.6 Simulator (Electrical)

Testing

Ideally, the SPV pump should be tested as per the site conditions where it is designed to operate.

The details of outdoor testing are discussed in the next sessions. However, for testing under simulated conditions, a programmable Solar PV (SPV) array simulator capable of simulating a given solar PV array configuration (i.e. the number of modules, the type and the series / parallel combination), site radiation and temperature conditions shall be required for laboratory. Measurement equipment with acceptable accuracy and precision shall be used for detection and data logging of the parameters listed in Table 2.

Table 2 - Core Parameters to be Measured and Recorded							
Parameter	Symbol	Unit	Measurement Uncertainty				
(1)	(2)	(3)	(4)				
SPV Array voltage	Va	V	21 percent				
SPV Array current	Ia	A	21 percent				
Pressure/head as measured	p	Kg/cm ²	22 percent				
Flow rate	Q	lps	22 percent				
Solar irradiance	E_e	W/m ²	22 percent				

4.7 Sump Well (Hydraulic Testing)

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 59 of
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134

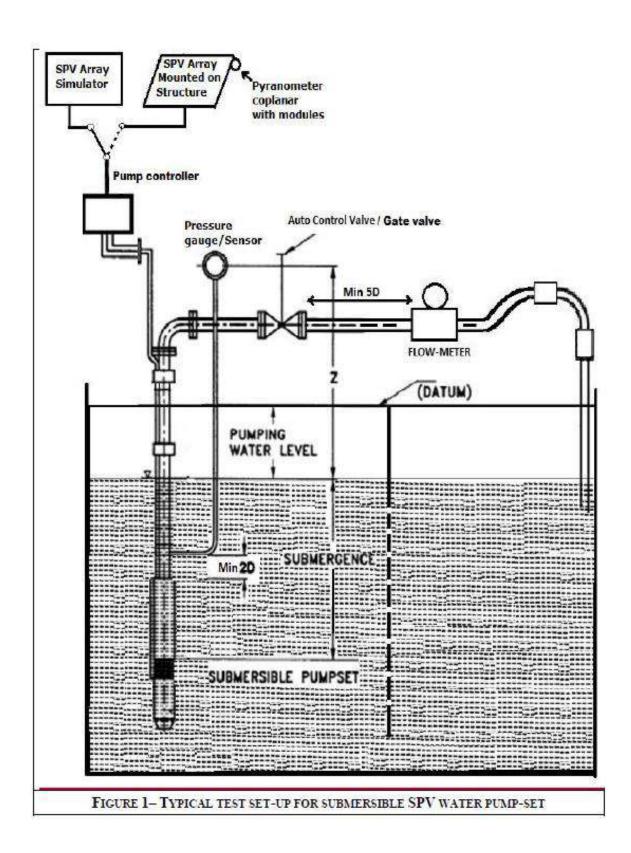
For the performance testing of SPV pumps a sump well with sensors for sensing, monitoring and

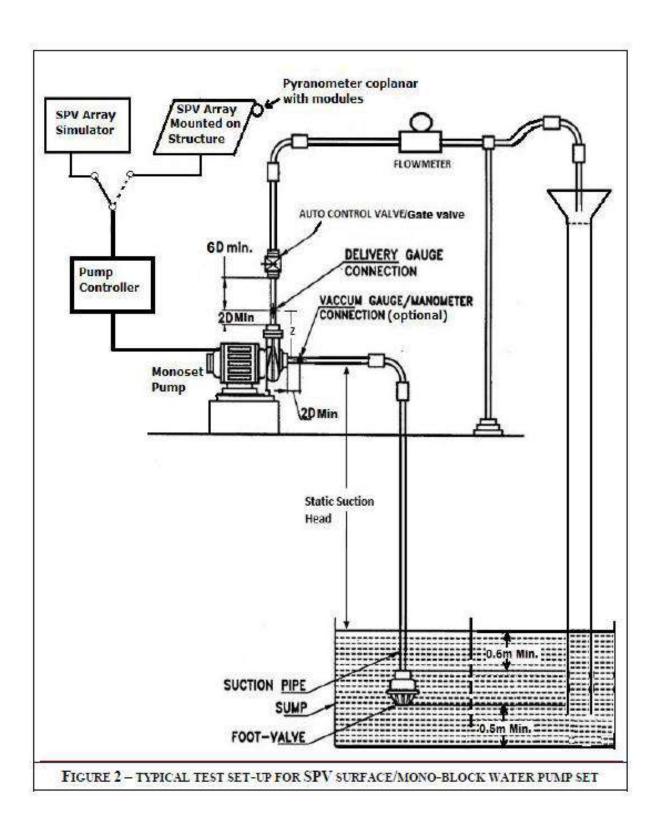
recording of pump parameters will be required. The details of the resources required are given below:

- a) Water tank / sump of required dimensions,
- b) PV Modules, Controller, Motor-pump set, and Other Accessories (Test Sample)
- c) Pressure transducer with data logging system d) Flow Meter with data logging system
- e) Suction pipe(s) (if applicable)
- f) Discharge pipe(s)
- g) Pyranometers and Temperature sensors with data logging system h) Auto control valves
- i) SPV array Simulator(s) for simulation of module arrays for testing j) SPV array for realistic testing
- k) Structure for mounting modules for realistic condition testing
- l) AAA class Sun simulator for testing of modules performance at STC

Refer to the block diagram at Figure 3.

4.8 Constant Head


Requirement


Dynamic head variation during test shall be within limit as specified in column 2 of table 3 and

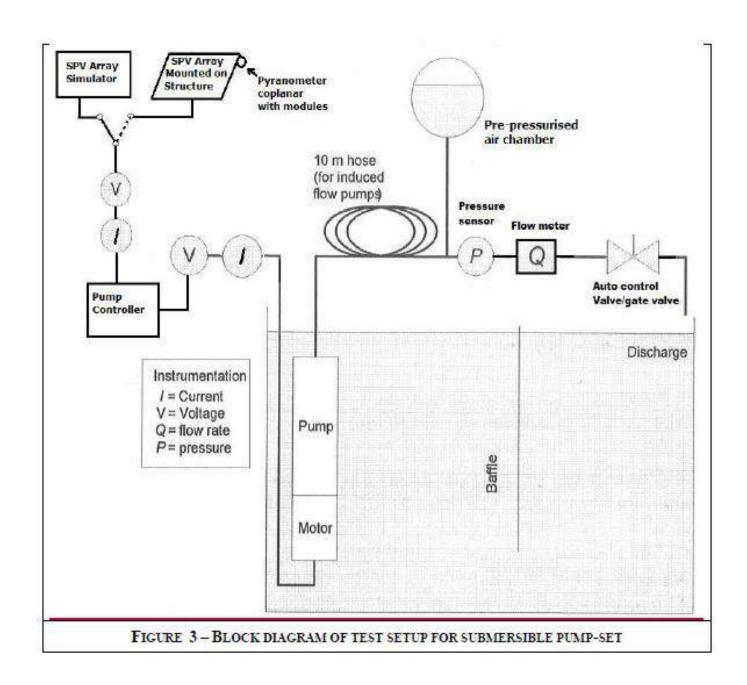

the allowable variation in arithmetic average (from start of flow point to end of flow point refer figure 5) of dynamic head shall be within value specified in column 3 of table 3. Any data with head variation during the test beyond the limit specified in column 2 of table 3 shall be treated as garbage data and shall not considered in calculations of daily water output.

Table 3– Allowable va	riation in arithmetic average	of dynamic head
Required Dynamic head in	Allowable variation in dynamic head during	Allowable variation in arithmetic average of dynamic
(1)	(2)	(3)
10	± 15 % = ± 1.5 meter	± 0.5 meter
20	± 10 % = ± 2 meter	± 0.5 meter
30	± 10 % = ± 3 meter	± 0.7 meter
50	± 8 % = ± 4 meter	± 0.8 meter
70	± 7 % = ± 4.9 meter	± 0.8 meter
100	$\pm 7\% = \pm 7 \text{ meter}$	± 1 meter

NIT/Bid Document	No.: EESL/06/2020-21/KUSUM/SWPS/Phase-1/10	OHP/Off SECTION –4 Technical	Page 61 of
Grid/192012030 Date	XX-XX-XXXX	& SCC	134

5.0 Test Procedure for Performance Evaluation of SPV Pumping System:

There are three major profiles to be completed for comprehensive certification and qualification of a sample SPV water pump as per this standard. Two steps correspond to two simulation profiles, Hot & Cold. The third step corresponds to actual outdoor conditions testing using natural sun radiation. The SPV water pump sample should attain or exceed the qualification bench marks set by MNRE for the specified model & design, in all the three profiles. Before executing the three profiles testing, it is necessary to conduct the following protections test on the sample:

- 1. Dry running: System must shut down within one minute/manufacturer specification in dry running condition (when water level goes below pump inlet).
- 2. Open circuit: System should not operate if any phase become open circuited, the controller shall be tripped within one minute/manufacturer specified time.
 - 3. Short circuit: System should not operate if any two or all three phase short circuited.
 - 4. Reverse polarity: System should not malfunction if polarity of input power is reverse.

The performance testing of SPV Pumping System for the three procedures are discussed in following sections:

5.1 Simulator Methods:

Simulation methods are the easiest and fastest way of estimating SPV pump performance. However, in these methods actual PV array is not used, instead a PV array simulator is used. Here, a Programmable SPV array simulator capable of generating power output equal to actual SPV array under the given radiation and temperature conditions for given SPV array configuration (i.e. the number of modules, the type and the series / parallel combination) will be used. Although any radiation & temperature can be created, for the purpose of testing, two conditions one Hot summer day conditions (hot profile) and the other Winter day conditions (cold profile) shall be used.

Hot & Cold Profiles:

The typical Hot & Cold day profiles are shown Figure 4. These profiles of full day Solar irradiance and temperature shall be loaded in PV array simulator, sequentially one after the other. The simulator output is connected to the motor & pump through the pump controller and the profiles are run on real time basis. The performance parameters as given in table 2 are collected every minute for the entire duration of run time (per day). The total water output and output in liters /watt STC/ day can be estimated at desired constant head / dynamic head for complete duration of profiles.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 65 of	_
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134	

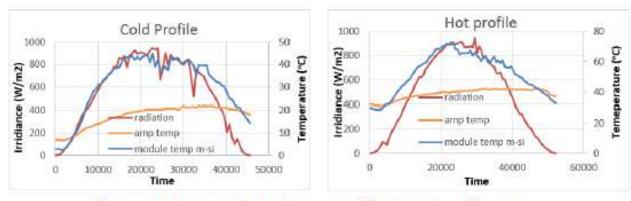


FIGURE 4 - TYPICAL SOLAR RADIATION HOT AND COLD PROFILE

Note: Per second data for hot and cold profile may be downloaded from MNRE/NISE website

5.2 Outdoor Condition using sun radiation:

To operate the motor-pump set using actual PV array, an array as per the Motor-pump set HP capacity to be designed. The STC wattage of all the PV modules is measured first, as per IEC 60904-1/ IS 12762-1 or clause number 11.6 of IEC 61215/ clause number 10.6 IS1 4286. The modules will then be installed on the structures, both in series and parallel combinations, as required, are connected and designed PV module array is created. The array output is connected to Motor & Pump through pump controller. Then using a PV Array tester measure the PV array output and different radiation intensities starting $100 \, \text{W/m}^2$ up to $1000 \, \text{W/m}^2$ (if possible), if $1000 \, \text{W/m}^2$ is not reached, calculate maximum power output at the maximum sun radiation that can be achieved (say $900 \, \text{or} \, 800 \, \text{w/m}^2$). Always measure & record the instantaneous water flow rate at each of the radiation levels, against the PV array output power. A Table listing three parameters sun radiation, array Wattage output and water flow rate at each power output to be recorded. This data is most useful and will be used is subsequent calculations. This data can also be compared with data supplied by manufacturer.

Per day water output test to be performed at desired constant dynamic head for complete day from dawn to dusk (sunrise to sunset). Irradiance shall be measured at coplanar to modules. Tracking may be done manually or automatically. Total flow shall be corrected at reference Average Daily Solar Radiation of 7.15 kWh/m² on the surface of SPV array (i.e. coplanar with the SPV Modules). Results of the SPV pumping system obtained under outdoor condition shall be compared with data supplied by the applicant and also from the results obtained through simulator testing to assess the performance of the system.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 66 of
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134

NOTE:-

- Handle PV modules carefully during installation.
- PV modules to be free from dirt (sand, bird droppings etc.,) during test.
- Install PV modules in shadow free access controlled area.
- Tracking shall be minimum three time in a day for maximum performance
- Pyrono-meter should be mounted co-planer with SPV modules.

Recoding, measurement & logging of flow for the period of hot profile, cold Profile and Realistic condition need to be done.

5.3 Remote Monitoring System Verification

Provision for remote monitoring of the installed pumps must be made in the controllers through an integral arrangement and it should be capable of providing live status/parameters through online portal.

6 MEASUREMENTS AND APPARATUS

6.1 Solar Radiation Measurement

Solar radiation at coplanar with Module surface shall be measured using pyranometer. Response time of pyranometer should not be more than 15 seconds. Interval between two readings should not be more than one minute for the calculation of average daily solar radiation.

6.2 Measurement of Head

6.2.1 *Delivery Head*

Digital pressure gauge/sensor shall be used, also a data logging system must be used for calculation of average head through day. Interval between two readings should not be more than one minutes for the calculation of average head. Accuracy for pressure sensor shall be within \pm 0.5 percent.

6.2.2 Suction Head

Suction head shall be kept constant by mean of vertical distance from sump water level to centre of pump impeller. Correction in head shall be applied as per atmospheric pressure at the testing place.

Distance measuring scale or laser based sensors may also be used for suction head measurement. For reference a vacuum gauge/absolute pressure gauge/manometer may also be used, if used, then shall be of suitable range for measuring suction head and delivery heads. Instead of mounting gauges directly on the pipes, they may be placed on separate stand.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 67 of
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134

6.3 Measurement of Rate of Flow

A good quality Magnetic flow-meter is desirable for flow measurement, data logging system must be used for calculation of cumulative water volume throughout the day. The maximum flow rate of flowmeters should be at least 1.5 times the maximum flow rate of pumps. Instrument can be selected as per 3.2 of IS 11346. Interval between two readings should not be more than one minutes for the calculation of cumulative flow. Accuracy for flowmeters shall be within \pm 0.5 percent.

7 CALIBRATION OF APPARATUS

All measuring instruments are to be calibrated periodically as per requirement.

8 STEP-WISE TEST PROCEDURE

8.1 Per Day Water Flow Test of Submersible Pumps

- a) Install the Pump-set as per Figure 1.
- b) Connect Pump-set with controller as per manufacturer instruction
- c) Use Solar PV Array Simulator Or actual output from SPV array, for testing of pump-set at given profile.
- d) Connect controller with PV array Simulator or with actual SPV array output as per requirement of profile
- e) Input STC performance data of each module in the array, into simulator and invoke the desired profile and run the same.
- f) For realistic condition test, make array by mounting all SPV modules on structure(s) by connecting modules in series or parallel as per requirement.
- g) Start controller after connecting it with array or array simulator.
- h) Use head control valve or pre-pressurize tank to keep constant desired dynamic head.
- j) Record parameters as given in table 2 recording interval shall be ≤ 1 minute.

8.2 Per Day Water Flow Test of Surface Pumps

a) Install pumps as per Figure 2

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 68 of
Grid/1920	012030 Dated	l:- XX-	& SCC	134	

- b) Maintain height to get desirable static suction head as per requirement
- c) Install of foot valve or non-return valve as per manufacturer

instructions; and d) Follow steps (b) to (j) of para No. 8.1

9 OBSERVATIONS

The following observations of complete day profile shall be recorded in a test record sheet. These observations shall be used to derive pump characteristics:

- a) Instantaneous Solar irradiation (W/m²), pyranometer reading
- b) Delivery gauge/sensor readings
- c) Suction gauge/sensor readings / Distance between water level to impeller eye, (if applicable)
- d) Gauge distance correction factor, Z
- e) Calculate cumulative daily solar radiation coplanar with solar modules (kWh/m²), f) Calculate total water discharge in a day at desirable constant head (Liters per Day) g) Water output per day per watts peak (Liters/Wp)

10 COMPUTATION OF TEST READINGS

10.1 Computation of Total Head for Surface (Mono-set) Pumps

Total Head H =
$$H_{SSL} + H_d + Z + ((V_d^2 + V^2) / 2g)$$

- H_{SSL} = Total Static suction Lift in meters of water column (measured by calibrated measuring tape or any distance measuring sensors)
- H_d = Delivery gauge/sensor reading in meters of water column
- Z = Gauge distance correction factor for delivery gauge centre and inlet pipe centre in meters (refer figure 3). If the delivery gauge centre is below the inlet pipe centre, Z is subtracted from the delivery gauge reading and if the delivery gauge centre is above inlet pipe centre, Z is added to the delivery gauge reading; the gauge distance correction factor shall never be applied to the suction vacuum gauge or mercury manometer reading irrespective of their positions:

Vd = Velocity at delivery gauge/sensor connection, m/s;

Vs = Velocity at suction gauge/sensor connection, m/s; and g = Acceleration due to gravity in m/s2.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 69 of	
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134	

The Total Static Suction Lift in surface pump (HSSL)

Hssl = Height in meter from water level to impeller + Altitude correction in meter + water temperature correction in meter.

10.1.1 Correction for Altitude

Barometric pressure shall be recorded at test place. The difference between atmospheric pressure at the test place and 10.33 mWC (that is atmospheric pressure at MSL) shall be deducted from Static suction lift.

10.1.2 Correction for Water temperature

Static suction lift specified in below Table shall be increased or reduced as given below when water temperature is below or above 33°C.

Table 4 - Correction for water temperature

rable 4 - Correction for water temperature						
Hourly Average of	Vapour	Correction in Static suction				
Water	pressure	lift				
Temperature	mWC	above and below 33°C				
10	013	+ 0.39				
15	0.18	+ 0.34				
20	0.24	+ 0.28				
25	0.33	+ 0.19				
30	0.43	+ 0.09				
33	0.52	0.00				
35	0.58	- 0.06				
40	0.76	- 0.24				
45	1.00	- 0.48				
50	1.28	- 0.76				

Suction head shall be adjusted minimum 3 time in a day as per average water temperature and barometric pressure, by adjusting water level of tank.

Following formula can also be used on behalf of

table 4
$$y = -0.0007 x^2 + 0.0130 x + 0.3079$$

Where y = Correction in Static suction lift x = Average of water temperature.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 70 of	
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134	

10.2 Computation of Total Head for Submersible Pump-sets

Total head $H = H_d + Z + ((V_d^2) / 2g)$

Where:

 H_d = Delivery gauge/sensor reading in meters of water column;

Z = Gauge distance correction factor for delivery gauge. Distance between gauge/sensor center to tank water level (refer figure 1).

V_d = Velocity at delivery gauge/sensor connection in m/s;

 $g = Acceleration due to gravity in m/s^2$.

10.3 Total Water Per-Day

Total per day water output shall be calculated by Integration (Sum) of flow rate with respect to time. Integration shall start from the time when pump set achieve desired constant head in morning time (start point refer figure 5) and end at the time when pump set unable to achieve desired constant head in evening time (End point refer figure 5).

In case if Average Daily Solar Radiation found less than requirement then test shall be performed on next sunny day.

10.4 Water Output Per Day Per Watt Peak

Water output per day per watts peak (ltr/Wp) = Water output (Liters) per day at specified head / Array STC power in watts-peak

10.5 Cumulative Daily Solar Radiation

Cumulative Solar Radiation (kWh/ m^2) in a day= Average of instantaneous irradiance reading from

Dawn to Dusk (kW/m²) X period of time in hours.

This can be obtained through time weight summation of pyranometer

readings. Dawn = Time of sunrise when irradiance become positive

from zero value.

Dusk = Time of sunset when irradiance become zero from positive value.

10.6 Mismatch in maximum power at STC among modules of array

The mismatch shall be calculated as under:

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 71 of	
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134	

% Power mismatch in array= $(P_{Max}-P_{Min})/(P_{Max}+P_{Min}) \times 100$

P_{Max} = Maximum power among modules in array

PMin = Minimum power among modules in array

10.7 Efficiency of Array

Efficiency of Array = The power output from array / (total area of modules in m^2 X Sun radiation in watts/ m^2)

10.8 Fill Factor of Array

Fill factor of Array = This has to be measured using a PV array tester. This depends on the overall series resistances and shunt resistances of modules in the array.

10.9 Output Voltage of Array

Output Voltage of Array = Sum of voltages of modules in series In parallel connected module strings, the lowest voltage generating strings will set the voltage.

10.10 Output Current of Array

Output Current of an Array = Sum of currents of the parallel strings in the array. The output current of a string is controlled by the lowest current generating module.

10.11 Output Power of Array

Output Power of Array = Sum of power of all modules- mismatch loss This can be measured by PV array tester.

11 EXAMPLES:

11.1 Total per day flow



FIGURE 5- TYPICAL GRAPH FOR UNDERSTANDING CALCULATION

If pump achieved constant head at 8:15:30 AM (Start point in figure 5) and in evening pump unable to keep constant desired head at 17:45:30 PM (End point in figure 5).

Flow rate in lps is recorded from 08:15:30 AM to 17:45:30 PM (start point to end point) If the average lps calculated is 3.55 lps then total flow will be

Total duration from start to end seconds:

$$= (9x3600) + (30x60) + (0x1) = 34200$$
seconds

Total per day flow in liters = Average flow in lps x total seconds

$$= 3.55 \times 34200 = 121410$$
 litters

For realistic test, correct total flow at reference Average Daily Solar Radiation as specified in MNRE specifications.

12 TEST REPORTS

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 73 of
Grid/192012030 Dated:- XX-XXXXX			& SCC	134	

In order to have uniformity, the test reports issued by the Labs shall use common format

developed by NISE. The test report shall be issued only in the name of applicant and shall clearly indicate whether the Solar PV water pumping system qualifies as per MNRE specifications or not along with details. A soft copy of test report shall also be provided to the applicant and shall be made available on web-portal of test lab, which may be accessed by the implementing agencies to verify the authenticity of the report. However, if the lab do not have such feature on their portal, the same can be verified by implementing agency by directly contacting the testing lab.

13 USE OF OTHER BRAND OF SOLAR MODULES

In case a test lab has tested and issued approval certificate for a particular model of SPV

pumping system using a particular brand of SPV Modules, the applicant may use SPV Modules of other brand for the same model of SPV pumping system without going for retesting of SPV pumping system with other brand of SPV Modules provided the test lab certifies that the SPV Module of other brand is atleast of same wattage capacity and its parameters and characteristics are not inferior to the brand of SPV Module with which the model of SPV pumping system was tested and certified by the testing lab. In addition, configuration of solar array i.e. the number of solar modules in series and/or parallel combination will remain unaltered. Further, in each case the SPV module shall follow the quality control order issued by MNRE from time to time. Following criterion shall be followed:

- $\ensuremath{\mathbb{Z}}$ Solar Array Maximum voltage Vmpp with new brand module shall be within $\pm 2\%$
 - of earlier module.
- Modules Efficiency and Fill Factor shall qualify minimum requirement of MNRE
 - specifications
- Array and module Mismatch shall meet the MNRE specifications.

13 LABS AUTHORISED FOR SOLAR PUMP TESTING

The National Institute of Solar Energy and any other lab accredited by NABL for testing

of solar PV water pumping system as per MNRE specifications and testing procedure are authorized to issue approval certificate on successful testing of a solar PV water pumping system.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 74 of
Grid/1920	012030 Dated	l:- XX-	XX-XXXX	& SCC	134

ANNEX A (Clause 2)

LIST OF REFERRED STANDARDS

IS NO.	Title
14286 : 2010	Crystalline Silicon Terrestrial Photovoltaic (PV) Modules — Design Qualification and Type Approval
3043:1987	Code of Practice for Earthing
5120:1977	Technical requirements for rotodynamic special purpose pumps (First
11346:2003	Tests for Agricultural and Water Supply Pumps - Code of Acceptance
6603:2001	Stainless Steel Bars and Flats
6911:2017	Stainless steel plate, sheet and strip Stainless steel plate, sheet and strip
7538:1996	Three-phase squirrel cage induction motors for centrifugal pumps for agricultural applications
8034:2002	Submersible pump sets - Specification (second revision)
9079:2002	Electric monoset pumps for clear, cold water for agricultural and water supply purposes - Specification (second revision)
9283:2013	Motors for submersible pump sets
11346:2002	Code of acceptance tests for agricultural and water supply pumps (first
14220:1994	Open well submersible pump sets - Specification
14582:1998	Single-phase small AC electric motors for centrifugal pumps for agricultural applications
ISO 9905:1994	Technical specifications for centrifugal pumps Class I
IEC 60068-2-6:2007	Environmental testing – Part 2-6: Tests – Test Fc: Vibration (sinusoidal)
IEC 60068-2- 30:2005	Environmental testing – Part 2-30: Tests – Test Db: Damp heat, cyclic (12+ 12h cycle)
IEC 60146-1-1:2009	Semiconductor converters - General requirements and line commutated converters - Part 1-1: Specification of basic requirements
IEC 60364-4- 41:2005	Low-voltage electrical installations - Part 4-41: Protection for safety - Protection against electric shock
IEC 60364-7- 712:2017	Low voltage electrical installations - Part 7-712: Requirements for special installations or locations - Solar photovoltaic (PV) power supply systems
IEC 60529:1989	Degrees of protection provided by enclosures (IP Code)
IEC 60947-1:2007	Low-voltage switchgear and control gear - Part 1: General rules
IEC 61000-6-2:2016	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity standard for industrial environments
IEC 61000-6-3:2006	Electromagnetic compatibility (EMC) - Part 6-3: Generic standards - Emission standard for residential, commercial and light-industrial environments
IS/IEC 61683 :1999	Photovoltaic Systems — Power Conditioners— Procedure for Measuring Efficiency
IS/IEC 61730-1: 2004	Photovoltaic (Photo Voltaic (PV)) Module Safety Qualification Part 1 Requirements for Construction

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 75 of
Grid/1920	012030 Dated	:- XX-	XX-XXXX	& SCC	134

IS/IEC 61730-2 : 2004	Photovoltaic (Photo Voltaic (PV)) Module Safety Qualification Part 2 Requirements for Testing
IEC 61800-3:2017	Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods
IEC 62109-1:2010	Safety of power converters for use in photovoltaic power systems - Part 1: General requirements
IEC 62305-3:2010	Protection against lightning - Part 3: Physical damage to structures and life
IEC 62458:2010	Sound system equipment – Electro-acoustical transducers - Measurement of large signal parameters

Universal Solar Pump Controller (USPC) Specifications for Stand-alone applications

1. Preamble:

The Controller for Solar PV pumping system is the heart and brain of the system. The Solar PV pumping system deployed at huge cost to the farmer and the exchequer for the Government is currently utilised only for half of the days in a year (around 150 days per year) on an average. In order to optimally utilize the solar photovoltaic system that generates the electricity throughout the year during sunshine hours, the controller supplied for installation of solar pumping system should be able to perform several other tasks for agricultural and other needs of a farmer. This will increase the productivity of agriculture sector and income of farmer. With the use of USPC the solar system could be used effectively throughout the year.

2. Technical Specification for Stand Alone Application

The USPC with SPV modules and structure can be used for agrarian applications such as water pumping, apple grading and polishing system, wheat (grain) flour grinding machine / aata chakki, cutter/chaff, deep-fridger / cold storage, blower fan for cleaning of grains, heating loads and any other standard voltage (400/415V) three phase motor/equipment of capacity not more than the capacity of Solar PV pumping system. The USPC operation schematic diagram is shown in Fig. 1. Further, the applications are not limited upto the few shown in the figure.

I. Following table gives specifications of electrical supply from USPC for motors other than the solar pumps. For operating the pump the USPC must follow the MNRE specifications for SPV pumping systems.

Sr		
No.	Description	Desired requirement
1	Motor Supply Phases	Three phase R-Y-B
2	Rated motor frequency	48-50Hz
3	Frequency operation	0 to 52Hz
4	Rated motor voltage	415V ± 5%
		Constant V by F or constant
5	Desired motor operation	motor flux control

II. Proposed electrical properties of USPC when operating motors other than motor- pump set:

Sr	Description	Desired requirement
No.		
1	Characteristic of voltages	Pure sinusoidal or Filtered AC output voltage at motor terminal. No PWM pulses allowed at the motor terminal, as it generates pronounced voltage spikes. The USPC output is intended to use for the traditional induction motors based applications which are design for sinusoidal grid
2	THD of motor terminal voltages	Below 3%
3	THD of motor current (in case of balance/linear	Below 5%
4	Balance supply	Three phases should be balanced and no negative sequence components to be allowed
5	Voltage spikes	Recurring or non-recurring voltage spikes more than 620V (peak of 440V AC supply) is not allowed
6	Alarms and Protections	Output voltage low, Output frequency low/high, Low

III. Controller should be able to run SPV pumping system as per MNRE specifications as well as any other type of motor of suitable rating, subject to the load characteristics of the equipment in which the motor is used is any of the following:

irradiance/PV power, Current overload, Peak

- a) Constant torque loads
- b) Constant power loads
- c) Quadratic loads
- d) Impact loads
- e) Hydraulic loads

Subject to the maximum torque being not more than 150% of the rated torque of the motor.

- IV. To ensure energy efficiency of solar PV system and to maintain reliability of PV installation against aging effect, module mismatch with time, partial shading, etc., the desired USPC properties and configuration should be as follows:
 - (a) Static MPPT efficiency of USPC should be equal or more than 98% during operation of 10 to 100% of rated STC PV power, and average MPPT tracking efficiency in the dynamic condition should be greater than 97 % with hot and cold profiles when feeding the water pumping, hydraulic or heating loads, so as to maintain MPPT irrespective of variation in solar energy or irradiance.
 - (b) USPC efficiency should be as follows for the operation at 80% rated STC

power of the PV array:

Sr No.	SPV pumping system	-	
	capacity	be	
1	3 HP	93.00%	
2	5 HP	93.00%	
3	7.5 HP	94.00%	
4	1-10 HP	94.50%	
5	15 HP	94.50%	

(c) Considering voltage variation over the year due to variation in temperature, irradiance and effect due to ageing, environmental damages to PV panels with time, USPC should have MPPT channels as an integral part of system (or externally connected part) with wide range of input PV voltage for MPPT tracking of the PV panels. Input voltage range variation should be tested as per manufacturer declaration (min, nominal or 90% of the maximum) or if no declaration is made than at least it should be tested as per the table given below.

Sr	Motor Pump	II	Input voltage range		
No.	set capacity	Minimum	Nominal	Maximum	
1	3 HP	(Vnominal-50)		(Vnominal+50)	
2	5 HP	(Vnominal-70)		(Vnominal+70)	
3	7.5 HP	(Vnominal-70)	Nominal	(Vnominal+70)	
4	1-10 HP	(Vnominal-100)		(Vnominal+100)	
5	15 HP	(Vnominal-100)		(Vnominal+100)	

- V. There should be Mode selection located on control panel of the USPC along with display and user should be able to select either to run motor-pump set of any other application. The software/firmware required to operate these applications must get automatically loaded when an appropriate position of the switch is engaged.
- VI. USPC must have at least four numbers of three phase output cables to feed power to the applications. The output power cable for specific application should get selected automatically upon selection of applications via keypad or via mobile or via remote control connectivity. The manual selector switch should not be used at the output to manage different loads. This is to ensure the hassle free operation of applications by farmer with adequate safety.

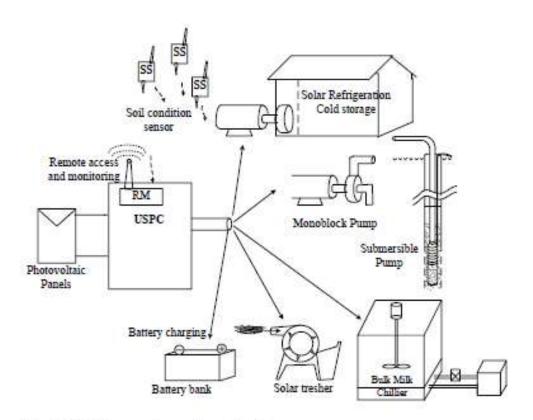


Fig. 1. USPC operation schematic diagram.

VII.USPC based Solar system must be equipped with Remote monitoring and remote fault identification:

- (a) Remote monitoring features should be integral part of solar pump controller and should provide time wise remote monitoring of PV voltage, PV Power, Water
 - output, head, when used in solar pump mode. When operated in farm equipment mode, it should show, PV voltage, PV power, motor voltage, motor current and motor frequency.
- (b) Cumulative energy generation from PV panels for a month, year and 5 years should be provided.
- (c) Remote monitor should show current status of system like On, Off and fault.
- (d) Software associated with remote monitoring should also provide location of $\ensuremath{\mathsf{SPV}}$
 - pumping system.
- (e) Controller should have support of sufficient Internal memory/ SD card / memory card to support remote monitoring in case of network failure.

USPC must have IP65 protection or must be housed in a cabinet having at least IP65 protection.

Testing Procedure for Universal Solar Pump Controller (USPC)

USPC must be tested in two principle modes:

- 1. As an offgrid solar pump controller: the testing should be as per MNRE specifications and Test procedure.
- 2. As a controller to operate motorized farm equipment: The testing should be as described below.

To test the USPC in the second mode the test centres must have standard actual mode suitable for 4 loading modes. The input to the USPC must be from a solar PV simulator using the hot and cold profiles issued by MNRE. Following tests may be performed on USPC driving the agrarian load like Atta Chakki, Chaff Cutter and Deep Freezer under test. The USPC must be able to operate these motors of the attached agrarian load, so that they deliver the rated torque and are able to also operate till 150% of the rated torque for 30 seconds.

S.No	Test Performed	Expected result	Test Lab	Remarks
	_		Observation	
1	Application	LCD screen provided on		
	description on	controller need to shows		
	screen and selection	various applications which		
	of applications	can be selected by keypad		
		using		
3	Mode operation of	Universal Solar Agriculture		
	applications	controller should come with		
	(Automatic:	multiple outputs which can		
	through keypad or	be permanently connected		
	remote / Manual:	to the application by		
	control switches)	selecting appropriate		
		options for		
		example following		
		applications should		
		automatically started by USPC		
		by appropriate mean such as		
		keypad or remote for		
		selection.		
		(i) Water Pumping		
		(ii) Chaff Cutter		
		(iii) Deep fridge/ Cold		
		Storage		
		(iv) Atta Chakki		
		(IV) Atta Cliakki		

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 81 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

4	Application Specific	USPC should have inbuilt		
	output	individual application	-	
	(Application	specific software to run the		
	specific software)	agrarian applications other		
		than pumps and output of		
		the controller should be		
		suitable for above		

5	Input PV voltage							
3	range							
	Minimum – Voc at							
	STC							
	Nominal – Voc at STC							
	Maximum – Voc at							
	STC							
6	USPC Efficiency	Efficiency	f the HDSC at	min	imum	VOC		
	measurement in Hot	Efficiency of the UPSC at minimum VOC Load % Charge Power Overall charge						
and cold profile should be measured		Luau 70	controlle		cking		controller efficiency	
			r eff (%)		icking	(%)	ler efficiency	
	as per BS EN		1 611 (70)	(%		(70)		
	50530/IEC 62891	10		(70)]			
	30330/1110 02071	25						
		50						
		75						
		100						
		Efficience	f the LIDCC at	N	aincl	VOC		
			the UPSC at	NOII	ninai	VUC		
		10						
		25						
		50						
		75						
		100						
		ECC: -:	Cala LIDGG -4	00.0	0/ - C N/	WOC		
			the UPSC at	90 9	% of Max	VOC		
		10						
		25						
		50						
		75						
		100						
		D 1 MD	סיי דיני: ·					
		Dynamic MPPT Efficiency						
		Hot Profile						
_	D. 1 12:	Cold Profile		0.4	1			
7	Ripple and distortion		v 5 % after 25	%				
	at output on full load	loading cond			OP. 1	1 11		
8	Measurement of		output with u					
	Output	_	ire Sine Wave		_	ovided		
	voltage		at least 4 tim	es	by lab			
	waveform	between 300			voltage	and		
		irradiance and maximum			current			
	0 1:00	irradiance as per the Above Watt DC			D 1		Maria	
9	Operation at different				should be s		Motor current	
	output from array	output Shoul	_				should be	
	with all four load	functioning a	•		recorded	•	recorded (for	
	types (Array wattage	condition. 0			the lab w		torque	
	as per MNRE model:	should be red	corded.		agrarian	Ioad	behavior) It	
							must be	

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 83 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

	Example 4800 Wp array) At 40% Power At 50% Power At 75% Power At 100% Power		supported by USPC	irrespective of available DC power from array (motor running condition). This is for Impact loading condition (such as Chaff cutter) current variation need to be recorded by laboratory.
10	Operation at different output from array with all four load types (Array wattage as MNRE model: Example 4800 Wp array) At 10 % Power At 25 % Power At 30 % Power	USPC need to run all the agrarian load in variable frequency at the lower irradiance value The load may be increased beyond 150% of rated torque to determine at what level the motor is stalling and stopping and it must trigger 'torque overload' alert. If it goes beyond 150% of the motor rated torque the USPC must trip	Motor current should be recorded (for torque behavior) as it is a function of V/F ratio controlled by USPC	hv laboratory.
11	Total circuit protection observation	 Soft Startup, low radiation protection, overload protection, Open circuit protection Reverse polarity protection 		

Expected output of individual applications must be specify as per their power rating and SPV

capacity, such as:

- 1. kg/hour grinding of atta chakki, and granularity.
- 2. Volumetric Iceing of cold storage in x hours.
- 3. Output in terms of kg/hours for a specific capacity grass-cutter.
- 4. Output must be quantify in terms of rate of volume or weight as above for any other applications.

ANNEXURE-II

QUALIFYING REQUIREMENT (QR)

In addition to the satisfactory fulfillment of requirements stipulated under section ITB, the following shall also apply:

Sr. No (A)	Criteria (B)	Documents to be Submitted (C)	Particulars in brief of the Documents submitted by the Bidder on Covering Letter (D)
1	The bidder should be a firm registered/incorporated under Companies Act, 1956 or Companies Act, 2013/ and further amendment (s), OR A registered partnership firm (registered under section 59 of the Partnership Act, 1932) OR A limited liability partnership (under the Limited Liability Partnership Act, 2002). Joint Venture is allowed in this tender	Copy of certificate of incorporation under Indian Companies Act 1956, repealed as 2013 and further amendment(s) from Registrar of Companies. OR A Registered partnership deed OR A LLP registration certificate issued by registrar of companies In addition, PAN Card and GST Registration Certificate shall also be submitted.	Company Incorporation Certificate/Partnership/LL P No.
2	The bidder should be, either of the following: i) Manufacturer of Solar PV Module OR ii) Manufacturer of Solar Pump OR iii) Manufacturer of Solar Pump Controller using indigenous technology OR iv) EPC/SI of 'similar works' in consortium with Solar PV Module Manufacturer or Solar Pump Manufacturer or Solar Pump Manufacturer or Solar Pump Controller Manufacturer 'Similar Works' means - Design, Supply, Erection, Testing and Commissioning of standalone (off-grid) solar PV based water pump sets. Past experience required for the	Work order copies/LoA's and Completion Certificates from registered central/state/PSU (Public Sector Undertaking)/Distribution Company (DISCOM). AND Memorandum of Association, Article of Association needs to be attached along with the bid. The bidder should also highlight the relevant provision/article number which highlights the objects relating to the business fields mentioned in the previous column. AND Copy of Factory License Indian Factories Act, 1948 or any document to establish factory in running operations under the and GST registration Certificate, supporting the fact of the bidder being engaged in the business field mentioned in column B. If factory license does not specify	Tabular details comprising of Order No.; Order Date; Client's Name; Description of Project; Supply/Completion Period (with from-/to- dates); Ref. No. & Date of Material Receipt Certificates/ PO/Work Completion Certificates

	04-2015 shall be as per Table 1 below	Government issued document shall be submitted in support of the bidder being engaged in the business field mentioned in column B	
3	Bidders should have Average Annual Turnover (ATO) as per Table 2 below for immediately preceding last three financial years 2017-2018, 2018-2019, and 2019-2020.	Duly authorized copy of audited annual report/Balance Sheet for last three financial years (i.e 2017-2018, 2018-2019, and 2019-2020) is to be submitted by respondent along with CA certificate. Turnover means operating income. Profitability means: Profit after tax	M/s 2017-18: 2018-19: 2019-20: Refer Format-1 in Annexure-III
4	The bidder should be profitable in last financial year i.e. 2019-20 and at least one of the financial year out of 2017-18 or 2018-19.	Duly authorized copy of audited annual report/Balance Sheet for last three years (i.e 2017-2018, 2018-2019, and 2019-2020) is to be submitted by respondent along with CA certificate. Turnover means operating income. Profitability means: Profit after	M/s 2017-18: 2018-19: 2019-20: Refer Format-2 in Annexure-III
5	The Net worth of bidder as on the last day of preceding financial year (2019-20) shall not be less than 100% of the paid-up share capital.	Duly authorized copy of audited annual report/Balance Sheet for last three years (i.e 2017-2018, 2018-2019, and 2019-2020) is to be submitted by respondent along with CA certificate. Turnover means operating income. Profitability means: Profit after tax In case of partnership, total closing capital of last financial year (2019-20) should not be less than total opening capital of 2019-20. The same will be treated as negative net worth and vice versa.	Individual Net Worth Details M/s 2017-18: 2018-19: 2019-20:

Declaration of sourcing/ manufacturing of components, clearly specifying as being indigenously manufactured. Details of the manufacturing/ sourcing firm/facility, including Company Profile, to be provided accordingly. AND The bidder should submit the list and pictures of the manufacturing and testing facilities and submit undertaking that if the details Bidder needs to submit provided by the bidders are in documentary evidence that deviation with the provision of 6 components should be **Attachment 15** the scheme, it will call for indigenously manufactured for disqualification. If considered the supplied systems. necessary, a team of SNA officials may visit the facilities of the bidders for verification Along with above documents required to be annexed to the invoice (at the time of payment in case of successful bidder), copies of the Excise invoice(s) of the manufacturing unit(s) of the Solar PV Module, Pumps etc. shall also be annexed to the invoice for claiming payment.

*In accordance with order No: P-45021/2/2017-PP (BE-II) dated: 16-Sept-2020 of Department of Promotion of Industry and Internal Trade and Order No F. No. 283/22/2019-GRID SOLAR, Ministry of New & Renewable Energy dated: 23-09-2020, <u>only 'Class-I Local Suppliers' are eligible to bid in this tender.</u>

Conditions for Consortium: In case Bidder wishes to participate in Consortium following conditions are additionally applicable: -

- 1. The term Bidder used hereinafter would therefore apply to both a single entity and a Consortium/ JV.
- 2. A consortium of maximum two (02) members is allowed in this RfP including one as lead bidder.
- 3. In case of Consortium/ JV, either one may act as a lead member.
- 4. In case of consortium all the members should mandatorily be from the business as defined in the QR for similar work.
- 5. Lead Bidder accepts primary responsibility for providing a robust and quality product meeting technical specifications of tender.
- 6. Member of any Consortium/Joint Venture Firm shall not be permitted to participate either in individual capacity or as a member of any other Consortium/Joint Venture Firm in the same tender. Submission or participation in more than one bid will cause disqualification of all the proposals submitted by the bidder.
- 7. All formalities in respect of submission of tender shall be done only in the name of 'Lead Member' and not in the name of Consortium/Joint Venture Firm. However, name & other details of both the members of Consortium/ Joint Venture Firm should be clearly mentioned in the Bid/Response.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 88 of	
Grid/1920	12030 Dated	l:- XX-	XX-XXXX	& SCC	134	

- 8. A copy of Memorandum of Understanding (MOU) executed between the members of Consortium/JV shall be submitted along with the tender. The complete details of the members of the Consortium/ Joint Venture Firm, their share and responsibility in the Consortium/JV etc. particularly with reference to financial, technical and other obligations shall be furnished in the MOU.
- 9. Once the offer/ bid is submitted, the MOU shall not be modified / altered/ terminated during the period of execution including any extension thereafter by EESL or validity of any letter of award awarded to the said Consortium/Joint Venture Firm. In case, the tenderer fails to observe/comply with this stipulation, the full Security Deposit/ Earnest Money Deposit (EMD)/Performance Bank Guarantee (PBG) shall be liable to be forfeited.
- 10. A duly notarized agreement of Consortium/Joint Venture Firm shall be executed between the 'Lead Member' and Consortium/JV Partner. This Agreement should be submitted in original with your offer/bid.
- 11. Authorized Member of Consortium/Joint Venture Firm: 'Lead Member' shall be authorized on behalf of Consortium/Joint Venture Firm to deal with the tender/EESL, sign the agreement or enter into contract in respect of the said tender, to receive payment and such activities in respect of the said tender/ contract. All notices/ correspondences with respect to the contract would be sent only to this 'Lead Member' of Consortium/Joint Venture Firm.
- 12. Required processing fee shall be submitted by the 'Lead Member'. Submission of processing fee by the 'Lead Member' it should be deemed as processing fee submitted by the Consortium/Joint Venture Firm.
- 13. Duration of MOU and Consortium/JV Agreement shall be valid during the entire execute in period/validity of letter of award and any extension thereafter /currency of the contract including the period of extension, if any
- 14. Any change in constitution of Consortium/Joint Venture Firm shall not be allowed.
- 15. On award of any contract to the Consortium/ Joint Venture Firm, a single Performa i.e Bank Guarantee shall be submitted by the lead bidder as per tender conditions. All the Guarantees like Security Deposit, Earnest money Deposit, Performance Guarantee, and Bank Guarantee for Mobilization Advance etc. shall be accepted only in the name of 'Lead Member' and splitting of guarantees among the members of Consortium/JV shall not be permitted.
- 16. Members of the Consortium/Joint Venture Firm shall be jointly and severally liable to the EESL for execution of the project/ Work/ Assignment etc. The Consortium/JV members shall also be liable jointly and severally for the loss, damages caused to the EESL during the course of execution of any awarded contract or due to non-execution of the contract or part thereof. Governing Laws for Consortium/ Joint Venture Firm: The Consortium/JV Agreement in all respect be governed by and interpreted in accordance with Indian Laws.
- 17. In case a group of MSMEs registered with NSIC (under single point registration scheme) form a consortium under NSIC, the Consortium needs to provide an authorization letter from NSIC accepting the terms and conditions of tender (except for those terms and conditions in which NSIC consortia are given special status as per Government of India Policy for the Government Purchase Programme) and also provide details of Consortium members, their manufacturing capacities, the share-out of quantities with schedule of supplies as per EESL tender schedule. Further, NSIC consortium mandatorily submit their service tax, pan card and other relevant documents.
- 18. Further, MSMEs are also eligible to participate in tender directly provided they meet all QRs in their individual capacities and are not part of NSIC Consortium or any other Consortium.
- 19. In case of Consortium of NSIC, the lead members/ partners in the consortium shall not separately participate as independent bidder or as members of any other consortium in this bidding process. All bids in contravention of this shall be rejected.
- 20. In case of participation as NSIC, it is clarified as consortium of maximum three member are allowed including NSIC as lead member.
- 21. NSIC consortium members should be from industries as mentioned in Qualifying Requirement (QR).
- 22. In one tender, only bid from one NSIC Consortium will be accepted.
- 23. All correspondence by EESL will be done with 'Lead member' only.

Notes:

1. Bidder has to submit the test certificates for each pump category in which bidder gets empanelled based on MNRE technical specs 2019 within 30 days of issuance of Letter of Empanelment by Implementing

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 89 of
Grid/1920	012030 Dated	:- XX-	XX-XXXX	& SCC	134

- Agency. Bidder has to provide a declaration as per Attachment-17
- 2. Test certificate already available for a solar pumping system can be used for other installers provided the user obtains written consent from the owner of test certificate to use the same. Further, in case of any change in the component of already tested solar pumping system the user shall get technical compatibility certificate

for the changes component along with the consent from certificate owner.

For manufacturer of Solar Pump Controller using indigenous technology:

- 1. If a bidder has submitted LoA/work experience certificates for supplying solar pump controllers to successful bidder (some other firm) who got that work from some Govt. tender, then, such work experiences shall only be considered on submission of the following along with the work experience certificate (as asked above):
 - a. LoA and completion certificate given by Govt. department to the firm for which supply work has been completed by the bidder. The LoA and completion certificate shall be in line with the documents as asked in the tender document.

In case of holding company:-

"In case bidder is not able to furnish its audited financial statements on standalone entity basis, the unaudited unconsolidated financial statements of the bidder can be considered acceptable provided the bidder furnishes the following further documents on substantiation of its qualification:

- (a) Copies of the unaudited unconsolidated financial statements of the Bidder along with copies of the audited consolidated financial statements of the Holding Company with a letter of undertaking from holding company supported by Board pledging unconditional and financial support. Irrevocable in the format enclosed in Attachemnt-9 of Section-6, Forms & Procedures.
- (b) A Certificate from the CEO/CFO of the Holding Company, stating that the unaudited unconsolidated financial statements form part of the Consolidated Annual Report of the Company.
- (c) In case a bidder does not satisfy the financial criteria, the holding company would be required to meet the stipulated turn over requirements, provided that the net worth of such holding company as on the last day of the preceding financial year is at least equal to or more than the paid-up share capital of the holding company. In such an event, the bidder would be required to furnish along with its bid, a letter of Undertaking from the holding company, supported by the Board Resolution, as per the format enclosed in the bid documents (Attachemnt-9 of Section-6, Forms & Procedures), pledging unconditional and irrevocable financial support for the execution of the Contract by the bidders in case of award.
- (d) In case the Bidder meets the requirement of Net worth based on the strength of its Subsidiary(ies) and/or Holding Company and/or Subsidiaries of its Holding Companies wherever applicable, the Net worth of the Bidder and its Subsidiary(ies) and/or Holding Company and/or Subsidiary(ies) of the Holding Company, in combined manner should not be less than 100% of their total paid up share capital. However individually, their Net worth should not be less than 75% of their respective paid up share capitals."

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 90 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

<u>Table-1 (Past Experience):</u>

Cluster	State	Quantity (State-wise)	Quantity (Cluster-wise)	For Solar Pumps/Controller (No. of Solar Pumps installed/Controller installed or supplied)	For Solar PV Modules (Experience in MWp)	
1	Chhattisgarh	20000	20000	1200	6	
2	Haryana	22000	22000	1320	6.6	
3	Madhya Pradesh	50000	50000	3000	15	
4	Maharashtra	100000	100000	6000	30	
5	Rajasthan	50000	50000	3000	15	
6	Uttar Pradesh	15000	15000	900	4.5	
7	Tripura	2600	2600	156	0.78	
8	Jammu & Kashmir	5000	5600	336	1.68	
	Ladakh	600				
9	Bihar	1000	11000	660	3.3	
	Jharkhand	10000	11000	000		
10	Karnataka	10000	10200	612	3.06	
10	Goa	200	10200	012	3.00	
11	Himachal Pradesh	1000	1100	66	0.33	
	Uttarakhand	100				
	Assam	500				
12	West Bengal	500	6000	360	1.8	
	Odisha	5000				
	Gujarat	775				
13	Dadra & Nagar Haveli	50	875	52.5	0.26	
	Daman & Diu	50				
	Punjab	5000				
14	Chandigarh	100	5600	336	1.68	
	Delhi	500				
	Tamil Nadu	5000				
	Andhra Pradesh	1000				
15	Kerala	100	7200	432	2.16	
	Telangana	1000				
	Puducherry	100				

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 91 of
Grid/192	012030 Dated	l:- XX-	XX-XXXX	& SCC	134

	Arunachal Pradesh	50			
	Sikkim	50			
16	Manipur	50	800	48	0.24
	Meghalaya	500			
	Mizoram	100			
	Nagaland	50			
	Total	307975	307975	18478.5	92.39

NOTE 1: The combine past experience for all clusters applied by the bidder shall be considered for evaluation. For example: If bidder quoted for Cluster 1 and Cluster 2, the past experience for Solar Pumps/Controller should be 2520 (1200 + 1320), past experience for Solar PV Modules should be 12.6 Mega Watt-peak (6 + 6.6).

Experience in any i.e. Pumping or Solar PV modules or Solar Pump Controller is Sufficient

Table-2 (Annual Turn Over Requirement):

Cluster	State	Quantity (State-wise)	Quantity (Cluster-wise)	ATO in INR Crore	
1	Chhattisgarh	20000	20000	28.38	
2	Haryana	22000	22000	31.22	
3	Madhya Pradesh	50000	50000	70.95	
4	Maharashtra	100000	100000	141.90	
5	Rajasthan	50000	50000	70.95	
6	Uttar Pradesh	15000	15000	21.29	
7	Tripura	2600	2600	4.06	
8	Jammu & Kashmir	5000	5600	8.75	
	Ladakh	600			
9	Bihar	1000	11000	15.61	
9	Jharkhand	10000	11000	15.01	
10	Karnataka	10000	10200	14.47	
10	Goa	200	10200	14.47	
11	Himachal Pradesh	1000	1100	1.72	
	Uttarakhand	100			
12	Assam	500	6000	8.59	
14	West Bengal	500	0000	0.37	

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 92 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

	Odisha	5000			
	Gujarat	775			
13	Dadra & Nagar Haveli	50	875	1.24	
	Daman & Diu	50			
	Punjab	5000			
14	Chandigarh	100	5600	7.95	
	Delhi	500			
	Tamil Nadu	5000			
	Andhra Pradesh	1000		10.22	
15	Kerala	100	7200		
	Telangana	1000			
	Puducherry	100			
	Arunachal Pradesh	50			
	Sikkim	50			
16	Manipur	50	800	1.25	
	Meghalaya	500			
	Mizoram	100			
	Nagaland	50			
	Total	307975	307975	438.54	

NOTE 2: The combine ATO for all the states applied by the bidder shall be consider for evaluation. For example: If bidder has quoted for Cluster 1 and Cluster 2, the ATO of the bidder should be at least INR 59.6 Cr (28.38 Cr +31.22 Cr)

Note:

- NSIC Consortium shall consist of maximum Two members including NSIC as lead member.
- In case a group of MSMEs registered with NSIC (under single point registration scheme) form a consortium under NSIC, the Consortium needs to provide an authorization letter from NSIC accepting the terms and conditions of tender (except for those terms and conditions in which NSIC consortia are given special status as per Government of India Policy for the Government Purchase Program) and also provide details of Consortium members, their manufacturing capacities, the share-out of quantities with schedule of supplies as per EESL tender schedule. Further, NSIC consortium mandatorily submits their GSTN, pan card and other relevant documents.
- In this tender, only one bid from NSIC Consortium will be accepted.
- In case of Consortium of NSIC, the lead members/ partners in the consortium shall not separately participate as independent bidder or as members of any other consortium in this bidding process. All bids in contravention of this shall be rejected. NSIC consortium members should be from relevant industry only as mentioned in QR.
- Further, MSMEs are also eligible to participate in tender directly provided they meet all QRs in their

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 93 of
Grid/19201	2030 Dated:	- XX-	XX-XXXX	& SCC	134

individual capacities and are not part of NSIC Consortium or any other Consortium. "Holding Company "and "Subsidiary "shall have the meaning ascribed to them as per Companies Act, 1956 or, in vogue.

- In case bidder is not able to furnish its audited financial statements on standalone entity basis, the unaudited unconsolidated financial statements of the bidder can be considered acceptable provided the bidder furnishes the following further documents on substantiation of its qualification:
 - Copies of the unaudited unconsolidated financial statements of the Bidder along with copies of the audited consolidated financial statements of the Holding Company with a letter of undertaking from holding company supported by Board pledging unconditional and financial support. Irrevocable in the format enclosed in Attachemnt-9 of Section-6, Forms & Procedures.
 - A Certificate from the CEO/CFO of the Holding Company, stating that the unaudited unconsolidated financial statements form part of the Consolidated Annual Report of the Company.
- In case a bidder does not satisfy the financial criteria, the holding company would be required to meet the stipulated turn over requirements, provided that the net worth of such holding company as on the last day of the preceding financial year is at least equal to or more than the paid-up share capital of the holding company. In such an event, the bidder would be required to furnish along with its bid, a letter of Undertaking from the holding company, supported by the Board Resolution, as per the format enclosed in the bid documents (Attachemnt-9 of Section-6, Forms & Procedures), pledging unconditional and irrevocable financial support for the execution of the Contract by the bidders in case of award.
- In case the Bidder meets the requirement of Net worth based on the strength of its Subsidiary(ies) and/or Holding Company and/or Subsidiaries of its Holding Companies wherever applicable, the Net worth of the Bidder and its Subsidiary(ies) and/or Holding Company and/or Subsidiary(ies) of the Holding Company, in combined manner should not be less than 100% of their total paid up share capital. However individually, their Net worth should not be less than 75% of their respective paid up share capitals.
- Net worth means the sum total of the paid up share capital and free reserves. Free reserve means all reserves
 credited out of the profits and share premium account but does not include reserves credited out of the
 revaluation of the assets, write back of depreciation provision and amalgamation. Further any debit balance
 of Profit and Loss account and miscellaneous expenses to the extent not adjusted or written off, if any, shall
 be reduced from reserves and surplus.
- Other income shall not be considered for arriving at annual turnover.
- The supporting documents in support of above Qualification Requirement should be submitted along with tender document, otherwise Techno-commercial offer submitted by the bidder is liable to be considered as non-responsive.
- All the required documents must be properly annexed and submitted as mentioned above with necessary details in brief in Column D.
- In case bidder has been found to be defaulting on the delivery period (in each LoA issued) as per assessment (supply, installation etc.) will be liable to be rejected. Bidder have to provide the quantity (Nos. & Percentage) supplied and installed against each LoA awarded by SNA at the date of submission of bid.

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 94 of
Grid/1920	012030 Dated	:- XX-	XX-XXXX	& SCC	134

Format 1

Information on Average Annual Turnover

{To be printed on the Letterhead of the bidder including full postal address, telephone, faxes and e-mail address}

Annual Turnover Data for the Last 3 Years

Year	Net Worth(in INR)	Annual Turnover (in INR)
2019-20		
2018-19		
2017-18		
Annual Average		

{This format should be certified by the practicing CA's of the Bidder}

Format 2

Information on Profitability

{To be printed on the Letterhead of the bidder including full postal address, telephone, faxes and e-mail address}

Profit After Tax Data for the last 3 years

Year	Amount (in INR)
2019-20	
2018-19	
2017-18	

{This format should be certified by the practicing CA of the Bidder

SPECIFIC CONFIRMATION BY BIDDER

Note: Please submit the table below duly filled, signed and stamped along with Techno-Commercial Bid.

Commercial Bid.	· ·
Description	Remarks
In case more than one bidder gets qualified based on the Techno-commercial Bid, then the bidder quoting the lowest total price for SPWPS defined in pricebid table will qualify as the successful bidder.	Agreed
Bidders should have financial and technical capabilities to execute the Scope of Work as specified in the RFP.	Vendor to give their acceptance along with supporting documents
Offer of Warranty less than 5 YEARS from the date of delivery of respective consignment will not be accepted and bidder shall be disqualified.	Agreed
Payment Terms–as per SCC Clause No. 1.0.	Agreed
Test Reports of SPWPS are to be submitted as per MNRE technical specifications and testing procedures issued in 2019 and its subsequent amendment(s) if any.	Agreed
For the purpose of this Tender, the successful bidder needs to provide name, address, mobile no., email addresses, designations of at least 3 Senior Nodal Officers (Regular Employees of their organization), nominated by their top management, who are reachable through any means of modern communication and who shall be accountable to deliver the product and associated services to SNA as per the tender.	To be indicated. To be enclosed separately
Any entity which has been barred by the Central/State Government or PSUs (Public Sector Undertakings), from participating in any bid, and the bar subsists as on the Bid Due date, would not be eligible to submit a Bid. Necessary declaration to this effect has to be given by the bidder as per format in the tender form.	Vendor to give a declaration on its letterhead pad.
Bidder should have an existing network or has to set-up a local service network in the Project Areas to support post-delivery maintenance activities. The Successful Bidder has to further support the project by opening office in the state for delivery with one Project Manager and one Project Engineer dedicated full-time to support supply and post-distribution warranty commitments.	Details of service support network or plans for deployment of such network in project area to be provided. To be enclosed separately as Annexure.
EESL/SNA reserves the right to ask other qualified bidders to match the evaluated price of L-1 Bidder. EESL/SNA reserves the right to offer up-to 25 % of L-1 quantity to NSIC Consortium, provided they meet all tender terms and conditions (except where they are exempted by Government Order) and also comply with the L-1 rate, quality, supply schedules of tender for bidders.	Agreed
EESL/SNA reserves the right for quantity variation up to +/- 20%. Further EESL/SNA reserves the right to place a repeat order in case of urgency for part quantity in the Letter of Award for similar work on same prices, terms and conditions.	Agreed

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 96 of
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134

EESL/SNA shall give preference domestically manufacturers as per Policy Notification no. F.No.33 (3)/2013-IPHW dated 22.05.14 of Department of Electronics & Information Technology, provided they meet all terms and conditions of tender on price, quality, supply schedule, branding, etc.	Agreed
It will be the sole discretion of EESL/SNA to award the quantity irrespective of the quantity mentioned by the bidder and the band provided.	Agreed
Detailed Test certificate for SPWPS being offered meets Technical Specifications as per RfP.	Agreed
Sample copy of batch test report specifying all the required tests will be reported with each consignment.	Agreed
Undertaking by authorized signatory that all Central/State taxes, duties, levies, etc. shall be complied with by the supplier.	Undertaking to be provided. To be enclosed separately as Annexure.
Declaration that Bidder has not been barred/ banned/ black-listed by Central/ State Government or PSUs (Public Sector Undertakings).	Agreed
Price Validity till 365 days from the date of Price Bid opening	Agreed
Declaration for using same make of equipment's as per test certificate in accordance with Attachment-16	Attachment-16 to be filled and submitted

Dated:- XX.12.2020

PRICE BID FORMAT (For Indicative purpose. To be filled online only).

Name of Work: - Design, Manufacture, Supply, Transport, Installation, Testing and Commissioning of Off Grid Solar Photovoltaic Water Pumping Systems of 1-10 HP in selected States on PAN India basis, including complete system warranty and its repair and maintenance for 5 Years under MNRE off-grid and decentralized solar PV applications scheme on behalf of State Nodal Agencies (SNAs).

NIT/Bid Document No.: - EESL/06/2019-20/KUSUM/SWPS /Phase-1/1-10 HP/Off Grid/2021XXX

Sr. No	Description	Quantity	Unit of Measurement (UOM)	Unit Rate exclusive of GST (IGST/SGST/ CGST/ UGST) (in Rs.) on F.O.R Destination Basis (In Figure)	GST (IGST/ SGST/ CGST/UGST) (in Rs.) on					
For Cluster 1 - Chattisgarh										
1	1 HP DC - Submersible Water Filled Pump with normal controller	1	Nos							
2	1 HP AC - Submersible Water Filled Pump with normal controller	1	Nos							
3	1 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos							
4	1 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos							
5	1 HP DC - Surface Pump with normal controller	1	Nos							
6	1 HP AC - Surface Pump with normal controller	1	Nos							
7	2 HP DC - Submersible Water Filled Pump with normal controller	1	Nos							
8	2 HP AC - Submersible Water Filled Pump with normal controller	1	Nos							
9	2 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos							
10	2 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos							
11	2 HP DC - Surface Pump with normal controller	1	Nos							
12	2 HP AC - Surface Pump with normal controller	1	Nos							
13	3 HP DC - Submersible Water Filled Pump with normal controller	1	Nos							

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION -4 Technical	Page 98 of
Grid/1920	12030 Dated	:- XX-	XX-XXXX	& SCC	134

14	3 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
15	3 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
16	3 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
17	3 HP DC - Submersible Water Filled Pump with USPC	1	Nos	
18	3 HP AC - Submersible Water Filled Pump with USPC	1	Nos	
19	3 HP DC - Submersible Oil Filled Pump with USPC	1	Nos	
20	3 HP AC - Submersible Oil Filled Pump with USPC	1	Nos	
21	3 HP DC - Surface Pump with normal controller	1	Nos	
22	3 HP AC - Surface Pump with normal controller	1	Nos	
23	3 HP DC - Surface Pump with USPC	1	Nos	
24	3 HP AC - Surface Pump with USPC	1	Nos	
25	5 HP DC - Submersible Water Filled Pump with normal controller	1	Nos	
26	5 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
27	5 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
28	5 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
29	5 HP DC - Submersible Water Filled Pump with USPC	1	Nos	
30	5 HP AC - Submersible Water Filled Pump with USPC	1	Nos	
31	5 HP DC - Submersible Oil Filled Pump with USPC	1	Nos	
32	5 HP AC - Submersible Oil Filled Pump with USPC	1	Nos	
33	5 HP DC - Surface Pump with normal controller	1	Nos	
34	5 HP AC - Surface Pump with normal controller	1	Nos	
35	5 HP DC - Surface Pump with USPC	1	Nos	
36	5 HP AC - Surface Pump with USPC	1	Nos	
37	7.5 HP DC - Submersible Water Filled Pump with normal controller	1	Nos	
38	7.5 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
39	7.5 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
40	7.5 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
41	7.5 HP DC - Submersible Water Filled Pump with USPC	1	Nos	
42	7.5 HP AC - Submersible Water Filled Pump with USPC	1	Nos	
43	7.5 HP DC - Submersible Oil Filled Pump with USPC	1	Nos	

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 99 of	
Grid/192012030 Dated:- XX-XX-XXXX				& SCC	134	

44	7.5 HP AC - Submersible Oil Filled Pump with USPC	1	Nos	
45	7.5 HP DC - Surface Pump with normal controller	1	Nos	
46	7.5 HP AC - Surface Pump with normal controller	1	Nos	
47	7.5 HP DC - Surface Pump with USPC	1	Nos	
48	7.5 HP AC - Surface Pump with USPC	1	Nos	
49	10 HP DC - Submersible Water Filled Pump with normal controller	1	Nos	
50	10 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
51	10 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
52	10 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
53	10 HP DC - Submersible Water Filled Pump with USPC	1	Nos	
54	10 HP AC - Submersible Water Filled Pump with USPC	1	Nos	
55	10 HP DC - Submersible Oil Filled Pump with USPC	1	Nos	
56	10 HP AC - Submersible Oil Filled Pump with USPC	1	Nos	
57	10 HP DC - Surface Pump with normal controller	1	Nos	
58	10 HP AC - Surface Pump with normal controller	1	Nos	
59	10 HP DC - Surface Pump with USPC	1	Nos	
60	10 HP AC - Surface Pump with USPC	1	Nos	
	For Cluster	2 - Haryana		
1	1 HP DC - Submersible Water Filled Pump with normal controller	1	Nos	
2	1 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
3	1 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
4	1 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
5	1 HP DC - Surface Pump with normal controller	1	Nos	
6	1 HP AC - Surface Pump with normal controller	1	Nos	
7	2 HP DC - Submersible Water Filled Pump with normal controller	1	Nos	
8	2 HP AC - Submersible Water Filled Pump with normal controller	1	Nos	
9	2 HP DC - Submersible Oil Filled Pump with normal controller	1	Nos	
10	2 HP AC - Submersible Oil Filled Pump with normal controller	1	Nos	
11	2 HP DC - Surface Pump with normal controller	1	Nos	
12	2 HP AC - Surface Pump with normal controller	1	Nos	

NIT/Bid	Document	No.:	EESL/06/2020-21/KUSUM/SWPS/Phase-1/10HP/Off	SECTION –4 Technical	Page 100 of	
Grid/1920	12030 Dated	l:- XX-	XX-XXXX	& SCC	134	